Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.144
Filtrar
1.
J Mater Sci Mater Med ; 35(1): 19, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526655

RESUMO

The efficacy of stem-cell therapy depends on the ability of the transplanted cells to escape early immunological reactions and to be retained at the site of transplantation. The use of tissue engineering scaffolds or injectable biomaterials as carriers has been proposed, but they still present limitations linked to a reliable manufacturing process, surgical practice and clinical outcomes. Alginate microbeads are potential candidates for the encapsulation of mesenchymal stromal cells with the aim of providing a delivery carrier suitable for minimally-invasive and scaffold-free transplantation, tissue-adhesive properties and protection from the immune response. However, the formation of stable microbeads relies on the cross-linking of alginate with divalent calcium ions at concentrations that are toxic for the cells, making control over the beads' size and a single-cell encapsulation unreliable. The present work demonstrates the efficiency of an innovative, high throughput, and reproducible microfluidic system to produce single-cell, calcium-free alginate coatings of human mesenchymal stromal cells. Among the various conditions tested, visible light and confocal microscopy following staining of the cell nuclei by DAPI showed that the microfluidic system yielded an optimal single-cell encapsulation of 2000 cells/min in 2% w/v alginate microcapsules of reproducible morphology and an average size of 28.2 ± 3.7 µm. The adhesive properties of the alginate microcapsules, the viability of the encapsulated cells and their ability to escape the alginate microcapsule were demonstrated by the relatively rapid adherence of the beads onto tissue culture plastic and the cells' ability to gradually disrupt the microcapsule shell after 24 h and proliferate. To mimic the early inflammatory response upon transplantation, the encapsulated cells were exposed to proliferating macrophages at different cell seeding densities for up to 2 days and the protection effect of the microcapsule on the cells assessed by time-lapse microscopy showing a shielding effect for up to 48 h. This work underscores the potential of microfluidic systems to precisely encapsulate cells by good manufacturing practice standards while favouring cell retention on substrates, viability and proliferation upon transplantation.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Humanos , Encapsulamento de Células , Cápsulas , Medula Óssea , Alginatos/química , Ácidos Hexurônicos/química , Sobrevivência Celular , Ácido Glucurônico/química
2.
J Sci Food Agric ; 104(4): 2458-2466, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37975168

RESUMO

BACKGROUND: Calcium alginate gels are widely used to encapsulate active compounds. Some characteristic parameters of these gels are necessary to describe the release of active compounds through mechanistic mathematical models. In this work, transport and kinetics properties of calcium alginate gels were determined through simple experimental techniques. RESULTS: The weight-average molecular weight ( M ¯ w = 192 × 103 Da) and the fraction of residues of α-l-guluronic acid ( F G = 0.356) of sodium alginate were determined by capillary viscometry and 1 H-nuclear magnetic resonance at 25 °C, respectively. Considering the half egg-box model, both values were used to estimate the molecular weight of calcium alginate as M g = 2.02 × 105 Da. An effective diffusion coefficient of water ( D eff , w = 2.256 × 10-9 m2 s-1 ) in calcium alginate was determined using a diffusion cell at 37 °C. Finally, a kinetics constant of depolymerization ( k m = 9.72 × 10-9 m3 mol-1 s-1 ) of calcium alginate was obtained considering dissolution of calcium to a medium under intestinal conditions. CONCLUSION: The experimental techniques used are simple and easily reproducible. The obtained values may be useful in the design, production, and optimization of the alginate-based delivery systems that require specific release kinetics of the encapsulated active compounds. © 2023 Society of Chemical Industry.


Assuntos
Alginatos , Imageamento por Ressonância Magnética , Alginatos/química , Géis/química , Espectroscopia de Ressonância Magnética , Modelos Teóricos , Cálcio/química , Ácidos Hexurônicos/química , Ácido Glucurônico/química
3.
Langmuir ; 40(3): 1950-1960, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-37991242

RESUMO

Core-shell hydrogel microcapsules have sparked great interest due to their unique characteristics and prospective applications in the medical, pharmaceutical, and cosmetic fields. However, complex synthetic procedures and expensive costs have limited their practical application. Herein, we designed and prepared several multichannel and multijunctional droplet microfluidic devices based on soft lithography for the effective synthesis of core-shell hydrogel microcapsules for different purposes. Additionally, two different cross-linking processes (ultraviolet (UV) exposure and interfacial polymerization) were used to synthesize different types of core-shell structured hydrogel microcapsules. Hydrogel microcapsules with gelatin methacryloyl (GelMA) as the core and polyacrylamide (PAM) as the thin shell were synthesized using UV cross-linking. Using an interfacial polymerization process, another core-shell structured microcapsule with GelMA as the core and Ca2+ cross-linked alginate with polyethylenimine (PEI) as the shell was constructed, and the core diameter and total droplet diameter were flexibly controlled by carving. Noteworthy, these hydrogel microcapsules exhibit stimuli-responsiveness and controlled release ability. Overall, a novel technique was developed to successfully synthesize various hydrogel microcapsules with core-shell microstructures. The hydrogel microcapsules possess a multilayered structure that facilitates the coassembly of cells and drugs, as well as the layered assembly of multiple drugs, to develop synergistic therapeutic regimens. These adaptable and controllable hydrogel microdroplets shall held great promise for multicell or multidrug administration as well as for high-throughput drug screening.


Assuntos
Alginatos , Hidrogéis , Hidrogéis/química , Cápsulas/química , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
4.
J Environ Manage ; 351: 119872, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157579

RESUMO

Controlled release of active ingredients are important for drug delivery and more recently environmental applications including modulated dosing of chemical and biological controls. This study demonstrates the importance of investigating various material science factors that can influence the diffusion rates of alginate beads to improve and tune their performance for marine environmental applications. This investigation aimed to design a rational workflow to aid in leveraging alginate bead use as a carrier matrix for releasing a specific active agent into water. Experiments were conducted to focus on the narrow a large list of relevant material formulation parameters, which included chitosan molecular weight, chitosan concentration, calcium concentration, drop height, and bead size. Once the most relevant material preparation methods were screened, a more robust statistic Design of Experiments approach was performed and results determined the important (and unimportant) factors for increasing dye release kinetics in marine water. The process was further streamlined by narrowing the critical experimental factors to a three-level based on the prior analysis: chitosan MW, chitosan concentration, and bead size. Analysis of the collected data indicated that while chitosan MW had a negligible impact (Fstatistic = 0.22), bead size (Fstatistic = 60.33) significantly influenced the diffusion rates based on surface area. However, chitosan MW had minor effects where lower chitosan MW enabled higher product release rates. This case investigation was a novel application of the design of experiment approach towards environmental applications to understand differences in release rates to marine waters for the first time and the workflow provided also serve as the basis for researchers to optimize other environmental applications requiring optimization when it is unknown how a large number of formulation variables will impact performance in different environmental scenarios.


Assuntos
Quitosana , Quitosana/química , Alginatos/química , Cálcio , Água , Ácidos Hexurônicos/química , Ácido Glucurônico/química
5.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003391

RESUMO

This study considers the potential of elemental analysis of polysaccharide ionotropic gels in elucidating the junction zones for different divalent cations. The developed algorithm ensures the correct separation of contributions from physically adsorbed and structure-forming ionic compounds, with the obtained results scaled to alginate C12 block. Possible versions of chain association into dimers and their subsequent integration into flat junction zones were analyzed within the framework of the "egg-box" model. The application of combinatorial analysis made it possible to derive theoretical relations to find the probability of various types of egg-box cell occurrences for alginate chains with arbitrary monomeric units ratio µ = M/G, which makes it possible to compare experimental data for alginates of different origins. Based on literature data and obtained chemical formulas, the possible correspondence of concrete biopolymer cells to those most preferable for filling by alkaline earth cations was established. The identified features of elemental composition suggest the formation of composite hydrated complexes with the participation of transition metal cations. The possibility of quantitatively assessing ordered secondary structures formed due to the physical sorption of ions and molecules from environment, correlating with the sorption capabilities of Me2+ alginate, was established.


Assuntos
Alginatos , Ácidos Hexurônicos/química , Alginatos/química , Ácido Glucurônico/química , Cátions/química , Cátions Bivalentes/química , Géis/química
6.
Pak J Pharm Sci ; 36(5(Special)): 1627-1635, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38008961

RESUMO

The study aimed to prepare and characterize biodegradable sustained-release beads of letrozole (LTZ) for treating cancerous disease. The ionotropic gelation method was used for the preparation and calcium chloride (CaCl2) was used as a gelating agent, while chitosan (CTS) and sodium alginate (NaAlg) as biodegradable polymeric matrices in the blend hydrogel beads. The beads were characterized for their size, surface morphology, drug entrapment efficiency, drug-polymer interaction and crystallinity using different analytic techniques, including optical microscopy, Scanning Electron Microscopy (SEM), UV-spectroscopy, Fourier-transform Infrared Spectroscopy (FTIR), Thermo gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction Analysis (XRD) respectively. In vitro swelling studies were also applied to observe the response of these polymeric networks against different pH (at 1.2, 6.8 and 7.4 pH). The results from TGA and DSC exhibited that the components in the formulation possess better thermal stability. The XRD of polymeric networks displays a minor crystalline and significant amorphous nature. The SEM micrographs revealed that polymeric networks have uneven surfaces and grooves. Better swelling and in vitro outcomes were achieved at a high pH (6.8,7.4), which endorsed the pH-responsive characteristics of the prepared beads. Hence, beads based on chitosan and sodium alginate were successfully synthesized and can be used for the controlled release of letrozole.


Assuntos
Quitosana , Preparações de Ação Retardada , Letrozol , Quitosana/química , Tamanho da Partícula , Polímeros , Alginatos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Hexurônicos/química , Microscopia Eletrônica de Varredura , Ácido Glucurônico/química
7.
Int J Biol Macromol ; 249: 126117, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541481

RESUMO

Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.


Assuntos
Alginatos , Microbioma Gastrointestinal , Humanos , Alginatos/química , Preparações de Ação Retardada/farmacologia , Ácido Hialurônico , Seda , Chá , Rim , Ácidos Hexurônicos/química , Ácido Glucurônico/química
8.
Chembiochem ; 24(19): e202300456, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439603

RESUMO

Horse Liver Alcohol Dehydrogenase (HLADH) has been immobilized on calcium-alginate beads and used for both oxidation and reduction reactions. To avoid swelling of the beads and their subsequent breakage, calcium ions were added to both reaction and storage solutions, allowing the beads to maintain the initial structural features. The techniques used for this purpose revealed that 2 mM Ca2+ is the optimal concentration, which does not significantly change the weight of the beads, the amount of water in them, and their external and internal structure. The optimized experimental procedure has been used to verify the properties of the enzyme in terms of reusability, storage, and thermal stability. The addition of calcium ions allows the enzyme to retain more than 80 % of its initial activity for fourteen cycles and approximately 50 % at the twentieth cycle. Moreover, when the biocatalyst has been stored in a buffer solution containing 2 mM Ca2+ , the retention of enzyme activity after 30 days was 100 %, compared to that measured before incubation. The encapsulated enzyme exhibits greater thermal stability than free HLADH up to at least 60 °C, preventing dimer dissociation into the two subunits.


Assuntos
Álcool Desidrogenase , Enzimas Imobilizadas , Cavalos , Animais , Enzimas Imobilizadas/metabolismo , Cálcio/química , Alginatos/química , Fígado , Íons , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Estabilidade Enzimática
9.
Int J Biol Macromol ; 240: 124491, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37076066

RESUMO

FCP-2-1, a water-soluble polysaccharide rich in galacturonic acid was isolated by continuous phase-transition extraction and purified with DEAE-52 cellulose and Sephadex G-100 column chromatography from finger citron with essential oil and flavonoids removed. The structural characterization and immunomodulatory activity of FCP-2-1 were further investigated in this work. FCP-2-1 with a Mw and Mn of 1.503 × 104 g/mol and 1.125 × 104 g/mol, respectively, was predominantly composed of galacturonic acid, galactose, and arabinose in a molar ratio of 0.685: 0.032: 0.283. The main linkage types of FCP-2-1 were proved to be →5)-α-L-Araf-(1→ and →4)-α-D-GalpA-(1→ based on methylation and NMR analysis. Moreover, FCP-2-1 was demonstrated to have significant immunomodulatory effects on macrophages in vitro by improving the cell viability, and enhancing phagocytic activity and secretion of NO and cytokines (IL-1ß, IL-6, IL-10 and TNF-α), indicating that FCP-2-1 could be used as a natural agent in immunoregulation functional foods.


Assuntos
Citocinas , Polissacarídeos , Polissacarídeos/química , Ácidos Hexurônicos/química , Macrófagos
10.
Expert Opin Drug Deliv ; 20(1): 115-130, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503355

RESUMO

INTRODUCTION: As a nature-derived polymer with swelling and gelling properties, alginate has found wide biopharma-relevant applications. However, there is comparatively limited attention on alginate in tablet formulations. Therefore, this review aimed to provide an overview of the applications of alginate in solid dosage form formulations. AREAS COVERED: This review outlines the role of alginate for oral sustained release formulations. For better insights into its application in drug delivery, the mechanisms of drug release from alginate matrices are discussed alongside the alginate inherent properties and drug properties. Specifically, the influence of alginate properties and formulation components on the resultant alginate gel and subsequent drug release is reviewed. Modifications of the alginate to improve its properties in modulating drug release are also discussed. EXPERT OPINION: Alginate-based matrix tablets is useful for sustaining drug release. As a nature-derived polymer, batch consistency and stability raise some concerns about employing alginate in formulations. Furthermore, the alginate gel properties can be affected by formulation components, pH of the dissolution environment and the tablet matrix micro-environment pH. Conscientious efforts are pivotal to addressing these formulation challenges to increase the utilization of alginate in oral solid dosage forms.


Assuntos
Alginatos , Polímeros , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Comprimidos/química , Preparações de Ação Retardada , Composição de Medicamentos
11.
J Colloid Interface Sci ; 634: 747-756, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563431

RESUMO

Ca2+-mediated molecular assembly of alginate underpins its wide range of applications in foods, pharmaceutics, biomedicines, tissue engineering and environmental treatments. The mode of growth of egg-box structure of alginate in the presence of Ca2+ is a long-standing fundamental problem to be concluded. In this work, we investigate the Ca-induced structural evolution of alginate in dilute solution using atomic force microscopy and dilute solution viscometry. It is demonstrated that the structural evolution follows the three critical steps of monocomplexation, dimerization and multimerization, upon binding with Ca2+. Interestingly, the alginate single chains grow into dimers and multimers via a doubling mode, i.e., successive emerging of dimer, tetramer, octamer, and hexadecamer. Compared with lower guluronate (G) alginate, higher G alginate exhibits a more pronounced multimerization process occurring at a lower ratio of Ca/G. A mechanistic model depicting the evolution of egg-box structure is proposed. The results would add new knowledge to the current egg-box model regarding the molecular assembly and gelation of an important biopolymer alginate, and provide fundamental basis for molecular engineering of alginate for more advanced applications.


Assuntos
Alginatos , Cálcio , Cálcio/química , Alginatos/química , Ácidos Hexurônicos/química , Dimerização , Ácido Glucurônico/química
12.
Environ Res ; 216(Pt 2): 114565, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243052

RESUMO

Rotenone is a botanical pesticide and has long been used for control of insect pests and also as a natural piscicide for management of fish populations in many countries. Field application for pest control, however, often encounters the movement of rotenone into surface water due to spray drift or surface runoff after rainfall, which could potentially result in water pollution and unexpected death of fishes. To minimize its effect on freshwater and the problem of fish dying, one solution was to encapsulate rotenone in specific microspheres, limiting its release and reducing its toxicity since rotenone can be quickly degraded under sunlight. In this study, pH-responsive alginate-based microspheres were synthesized to encapsulating rotenone, which were designated as rotenone beads. The rotenone beads, along with alginate beads (devoid of rotenone) were characterized and evaluated for their responses to pH and effects on zebrafish. Results showed that the microspheres had high loading efficiency (4.41%, w/w) for rotenone, and rotenone beads well responded to solution pH levels. The cumulative release rates of rotenone from the beads were 27.91%, 42.72%, and 90.24% at pH 5.5, 7.0, and 9.0, respectively. Under acidic conditions, the rotenone release rate was lower due to hydrogen bonding. On the contrary, rotenone became more quickly released at the high pH due to intermolecular repulsion. The toxicity of rotenone beads to zebrafish and fish embryos at a pH of 5.5 was reduced by 2- and 4-fold than chemical rotenone. Since pH levels in most freshwater lakes, ponds, and streams vary from 6 to 8, rotenone release from the beads in such freshwater could be limited. Thus, the synthesized rotenone beads could be relatively safely used for pest control with limited effects on freshwater fishers.


Assuntos
Alginatos , Peixe-Zebra , Animais , Alginatos/química , Microesferas , Rotenona/toxicidade , Ácidos Hexurônicos/toxicidade , Ácidos Hexurônicos/química , Ácido Glucurônico/toxicidade , Ácido Glucurônico/química , Concentração de Íons de Hidrogênio
13.
Int J Biol Macromol ; 222(Pt A): 262-271, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150568

RESUMO

Here, core-shell hydrogel beads for oral insulin delivery at intestine was reported, which was a target site for insulin absorption. The core-shell hydrogel beads were prepared using naturally derived alginate and chitosan polysaccharides by simple dropping technique. In order to effectively control leakage of insulin from core-shell hydrogel beads, insulin was embedded into the layered double hydroxides (LDHs). LDH/insulin-loaded complexes were firstly coated with chitosan, and then coated with alginate to generate core-shell hydrogel beads. The biocompatibility and angiogenic response of core-shell hydrogel beads were evaluated by direct contact of the beads with chick embryo chorioallantoic membrane, which indicates safety of the core-shell beads. The beads successfully retained the insulin within the core-shell structure at pH 1.2, indicating that insulin had a good protective effect in harsh acidic environments. Interestingly, insulin release starts at the simulated intestinal fluid (pH 6.8) and continue to release for 24 h in a sustained manner.


Assuntos
Alginatos , Quitosana , Embrião de Galinha , Animais , Alginatos/química , Quitosana/química , Insulina/química , Hidrogéis , Ácidos Hexurônicos/química , Ácido Glucurônico/química , Concentração de Íons de Hidrogênio
14.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077367

RESUMO

We previously developed chicken interleukin-1ß (IL-1ß) mutants as single-dose adjuvants that induce protective immunity when co-administered with an avian vaccine. However, livestock such as pigs may require a vaccine adjuvant delivery system that provides long-lasting protection to reduce the need for successive booster doses. Therefore, we developed chitosan-coated alginate microparticles as a carrier for bovine serum albumin (BSA) or porcine IL-1ß (pIL-1ß) and assessed their physical, chemical, and biological properties. Electrospraying of the BSA-loaded alginate microparticles (BSA/ALG MPs) resulted in an encapsulation efficiency of 50%, and those MPs were then coated with chitosan (BSA/ALG/CHI MPs). Optical and scanning electron microscopy, zeta potential analysis, and Fourier transform infrared spectroscopy were used to characterize these MPs. The BSA encapsulation parameters were applied to ALG/CHI MPs loaded with pIL-1ß, which were not cytotoxic to porcine fibroblasts but had enhanced bio-activity over unencapsulated pIL-1ß. The chitosan layer of the BSA/ALG/CHI MPs prevented burst release and facilitated sustained release of pIL-1ß for at least 28 days. In conclusion, BSA/ALG/CHI MPs prepared as a carrier for pIL-1ß may be used as an adjuvant for the formulation of pig vaccines.


Assuntos
Quitosana , Vacinas , Alginatos/química , Animais , Quitosana/química , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Interleucina-1beta , Soroalbumina Bovina/química , Suínos
15.
Mar Drugs ; 20(9)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36135753

RESUMO

Alginate is an acidic polysaccharide mainly extracted from kelp or sargassum, which comprises 40% of the dry weight of algae. It is a linear polymer consisting of ß-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages, possessing various applications in the food and nutraceutical industries due to its unique physicochemical properties and health benefits. Additionally, alginate is able to form a gel matrix in the presence of Ca2+ ions. Alginate properties also affect its gelation, including its structure and experimental conditions such as pH, temperature, crosslinker concentration, residence time and ionic strength. These features of this polysaccharide have been widely used in the food industry, including in food gels, controlled-release systems and film packaging. This review comprehensively covers the analysis of alginate and discussed the potential applications of alginate in the food industry and nutraceuticals.


Assuntos
Alginatos , Suplementos Nutricionais , Alginatos/química , Preparações de Ação Retardada , Géis , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Íons , Polímeros
16.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36012297

RESUMO

Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and ß-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate's bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate's remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.


Assuntos
Alginatos , Polímeros , Alginatos/química , Biopolímeros , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Cicatrização
17.
Int J Biol Macromol ; 218: 665-678, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870624

RESUMO

Composite gel beads using calcium alginate and different concentrations of pregelatinized corn starch (PCS) were produced to encapsulate phycocyanin (PC). Rheological properties of different sodium alginate/PCS/PC mixtures, structural and morphological properties of beads, and kinetic stability of encapsulated PC (upon heating at various time-temperature combinations) were then assessed. Rheological properties of the mixtures exhibited shear thinning behaviors. Aquagram revealed that the PC-containing beads had more water structure with weak­hydrogen bonds. Morphological images represented less subsidence in the structures of composite gel beads, unlike PCS-free beads. Kinetic study showed that degradation rate constant values of PC encapsulated in composite gel beads (1.08-3.45 × 10-4, 3.38-4.43 × 10-4, and 5.57-15.32 × 10-4 s-1) were lower than those in PCS-free alginate gel beads (4.45 × 10-4, 9.20 × 10-4, and 18.04 × 10-4 s-1) at 40, 50, and 60 °C, respectively. This study suggests that the composite gel beads can improve PC stability.


Assuntos
Alginatos , Amido , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Ficocianina , Amido/química , Zea mays
18.
Carbohydr Polym ; 294: 119788, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868759

RESUMO

The present work investigates the calcium-induced gelation behavior and gel properties of alginate samples of lithium-, sodium-, and potassium-forms. It was found that the effect of the alkali metal counterions varied greatly with the calcium concentration regime, namely, the molar ratio of calcium to guluronate (R = Ca/G). Four different regions were identified, including R < 0.25, 0.25 < R < 0.55, 0.55 < R < 1.0, and R > 1.0. The counterion dependence was interpreted by the relative interaction strength of the monovalent cations with COO- groups and their exchange reaction with Ca2+ ions. A mechanistic model depicting the role of counterions was proposed in relation to different steps of the binding and gelation of alginate with calcium. The knowledge gained in the study would further advance the understanding of the gelation mechanism of the industrially important alginate and guide its specific utilizations.


Assuntos
Alginatos , Cálcio , Alginatos/química , Cálcio/química , Géis/química , Ácidos Hexurônicos/química , Íons
19.
Folia Microbiol (Praha) ; 67(6): 935-945, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35849273

RESUMO

The accumulation of chitin waste from the seafood industry is a serious environmental problem. However, this residue can be degraded by chitinases and its subproducts, such as chitosan, economically exploited. In this study, a chitinase producer bacteria, identified as Paenibacillus illinoisensis, was isolated from the Brazilian coastal city of Terra de Areia - Rio Grande Do Sul (RS) and was immobilized within alginate beads to evaluate its chitinase production. The alginate beads containing cells presented an average size of 4 mm, 99% of immobilization efficiency and increased the enzymatic activity in 40.71% compared to the free cells. The biomass during enzymatic production increased 62.01% and the total cells leaked from the alginate beads corresponded to 6.46% after 96 h. Immobilized cells were reused in a sequential batch system and remained stable for production for up to four 96-h cycles, decreasing only 21.04% of the initial activity at the end of the fourth cycle. Therefore, the methodology used for cell immobilization resulted in adequate beads to maintain cell viability during the enzymatic production, increasing enzymatic activity, showing low cell leakage from the support and appropriate recyclable capacity.


Assuntos
Quitinases , Alginatos/química , Solo , Brasil , Ácidos Hexurônicos/química
20.
Mar Drugs ; 20(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35736167

RESUMO

Alginate is a hydrocolloid from algae, specifically brown algae, which is a group that includes many of the seaweeds, like kelps and an extracellular polymer of some bacteria. Sodium alginate is one of the best-known members of the hydrogel group. The hydrogel is a water-swollen and cross-linked polymeric network produced by the simple reaction of one or more monomers. It has a linear (unbranched) structure based on d-mannuronic and l-guluronic acids. The placement of these monomers depending on the source of its production is alternating, sequential and random. The same arrangement of monomers can affect the physical and chemical properties of this polysaccharide. This polyuronide has a wide range of applications in various industries including the food industry, medicine, tissue engineering, wastewater treatment, the pharmaceutical industry and fuel. It is generally recognized as safe when used in accordance with good manufacturing or feeding practice. This review discusses its application in addition to its structural, physical, and chemical properties.


Assuntos
Alginatos , Alginatos/química , Bactérias , Ácidos Hexurônicos/química , Hidrogéis , Polímeros , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...